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Convex optimization and 
information theory

• Many problems in (classical) information theory can be formulated as convex 
optimization problems 

• Examples: Computing capacities, determining good coding schemes, finding 
upper bounds on errors (to be discussed),… 

• There has already been a very fruitful relationship between classical 
information theory and optimization theory 

• Quantum information theory: in very abstract terms, commuting variables 
have to be replaced by non-commuting variables -> optimization over non-
commutative fields 

• This talk: an introduction into the the subject, based on the problem of sending 
information over a noisy channel  

• In particular, we will focus on constructing relaxations to obtain upper bounds
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Classical noisy channel coding (II)

• Shannon’s asymptotic independent and identical distributed (iid) channel capacity:
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Linear program relaxations (II)

• The bilinear program can be relaxed to a linear program:
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• Classical variables are replaced by operators (“matrices”) on a Hilbert space 

• Hilbert space         = linear vector space equipped with a scalar product 
(sesquilinear positive definite form) 

• Configurations of the physical system are described by elements       (“states”) 
of unit norm of the Hilbert space 

• Separated labaratories are described by taking the tensor product of their 
respective Hilbert spaces

Adding quantum assistance…. 
but first recap what “quantum” means
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Semi-definite programming (SDPs) (I)  
• A semi-definite program (SDP) is a triple (T, A, B) with T a hermitian preserving 

linear map on matrices, and A, B hermitian matrices

• We can associate to such a triple two optimization programs

• Most often, their value agree; this leads to efficient (in terms of the size of 
the matrices and the approximation error) optimization algorithms

• SDPs can be used to obtain a hierarchy of outer approximations to convex 
optimization problems (Lassere and Parillo)

minimize
X

Trace[Y B]

subject to Y � 0

T (X) � A

maximize
X

Trace[X A]

subject to X � 0

T (X) � B



• SDPs can be used to obtain a hierarchy of outer approximations to convex 
optimization problems (Lassere and Parillo) 

• Idea: finding a consistent way to construct SDP relaxations of convex 
optimization problems 

• Can be generalized to non-commutative variables (Navascues et. al., Doherty 
et. al.) 

• Our contribution: new converging sequence of tighter SDP relaxations for 
quantum bilinear optimization problems such as the channel coding 
problem with entanglement assistance

Semi-definite programming (SDPs) (II) 

psucc(W,k)  p⇤succ(W,k) = sdp1(W,k)  . . .  sdp1(W,k) <— efficiently computable!
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[Lasserre, SIAM (2001)], [Parrilo, Math. Program. (2003)], [Navascues et al., PRL (2007)], 
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⇤
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⌦ =

✓
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⇤
| i

◆

⌦ =
X

u,v

h |XuXv| i|uihv| with Xu =

⇢
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• First level relaxation:

sdp1(W,k) = maximize

⌦

1

k

X

x,y,i

W

X!Y

(y|x)⌦(i,x),(i,y)

subject to ⌦ 2 Pos(1 + k|X|+ k|Y |) , ⌦;,; = 1 with ; the empty symbol

⌦

u,v

� 0 8u, v 2 X ⇥ [k] [ Y ⇥ [k] [ {;}
X

x

⌦

w,(i,x) = ⌦

w,; 8i 2 [k] , w 2 X ⇥ [k] [ Y ⇥ [k] [ {;}

X

i

⌦

w,(i,y) = ⌦

w,; 8y 2 Y,w 2 X ⇥ [k] [ Y ⇥ [k] [ {;} .

sdp1(W,k) = maximize

⌦

1

k

X

x,y,i

W

X!Y

(y|x)⌦(i,x),(i,y)

subject to ⌦ 2 Pos(1 + k|X|+ k|Y |)

psucc(W,k)  p⇤succ(W,k)  sdp1(W,k)

First level semidefinite  
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⌦
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w,(i,y) = ⌦

w,; 8y 2 Y,w 2 X ⇥ [k] [ Y ⇥ [k] [ {;} .

• First level relaxation: psucc(W,k)  p⇤succ(W,k)  sdp1(W,k)

First level semidefinite  
programming relaxation (II)
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⌦
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X

i

⌦

w,(i,y) = ⌦

w,; 8y 2 Y,w 2 X ⇥ [k] [ Y ⇥ [k] [ {;} .

• First level relaxation:

• Going back to our example:

Z =

0

BBBBBB@

1/3 1/3 0 0
0 0 1/3 1/3

1/3 0 1/3 0
0 1/3 0 1/3

1/3 0 0 1/3
0 1/3 1/3 0

1

CCCCCCA

(known before, with two-
dimensional assistance)

psucc(Z, 2) =
5

6
⇡ 0.833

p⇤succ(Z, 2) �
2 + 2�1/2

3
⇡ 0.902

psucc(W,k)  p⇤succ(W,k)  sdp1(W,k)

First level semidefinite  
programming relaxation (II)
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⌦
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⌦

w,(i,x) = ⌦

w,; 8i 2 [k] , w 2 X ⇥ [k] [ Y ⇥ [k] [ {;}

X

i

⌦

w,(i,y) = ⌦

w,; 8y 2 Y,w 2 X ⇥ [k] [ Y ⇥ [k] [ {;} .

• First level relaxation:

• Going back to our example:

Z =

0

BBBBBB@

1/3 1/3 0 0
0 0 1/3 1/3

1/3 0 1/3 0
0 1/3 0 1/3

1/3 0 0 1/3
0 1/3 1/3 0

1

CCCCCCA

(known before, with two-
dimensional assistance)

psucc(Z, 2) =
5

6
⇡ 0.833

p⇤succ(Z, 2) �
2 + 2�1/2

3
⇡ 0.902

• Relaxation:

• Four-dimensional assistance: p⇤succ(Z, 2) �
1

2
+

1p
6

p⇤succ(Z, 2)  sdp1(Z, 2) ⇡ 0.908 =
1

2
+

1p
6

psucc(W,k)  p⇤succ(W,k)  sdp1(W,k)

First level semidefinite  
programming relaxation (II)



Conclusions
• Fruitful interplay of optimization theory and (quantum) information theory 

• Going quantum (= adding quantum assistance to classical tasks) roughly 
means that commutative variables have to replaced by non-commutative 
ones 

• Optimization becomes harder, but semi-definite programming can be used to 
obtain converging upper bounds 

• Many more directions to explore: fully quantum scenario, other information 
theoretic protocolls,…

Thanks!


